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A single protein crystal structure contains information about

dynamic properties of the protein as well as providing a static

view of one three-dimensional conformation. This additional

information is to be found in the distribution of observed

electron density about the mean position of each atom. It is

general practice to account for this by refining a separate

atomic displacement parameter (ADP) for each atomic

center. However, these same displacements are often

described well by simpler models based on TLS (translation/

libration/screw) rigid-body motion of large groups of atoms,

for example interdomain hinge motion. A procedure,

TLSMD, has been developed that analyzes the distribution

of ADPs in a previously refined protein crystal structure in

order to generate optimal multi-group TLS descriptions of the

constituent protein chains. TLSMD is applicable to crystal

structures at any resolution. The models generated by

TLSMD analysis can significantly improve the standard

crystallographic residuals R and Rfree and can reveal intrinsic

dynamic properties of the protein.

Received 14 December 2005

Accepted 14 February 2006

1. Introduction

1.1. Dynamic information from a static structure

Although crystallography is generally thought of as pro-

viding only a static snapshot of the molecules in the crystal, in

fact it is also possible to extract a significant amount of

information about dynamic properties. A crystal structure may

be viewed as a blurred snapshot in which the blurring high-

lights portions of the molecule that are in motion and indicates

which way they are moving. The underlying physical basis of

this blurring is a combination of at least two effects (Bürgi,

2000). Dynamic disorder arises from residual thermal vibra-

tion and at low temperature is primarily relevant to the

blurred view of individual atoms or small groups of atoms such

as a single amino-acid side chain. Static disorder is relevant to

larger-scale motions and arises when individual molecules

within the crystal lattice are frozen into different micro-

conformations corresponding to states sampled along a

trajectory of motion. The relative importance of these

contributions to diffraction by real crystals differs greatly

between small-molecule crystallography and macromolecular

crystallography. Small molecules pack tightly into the crystal

lattice, leaving little if any room for large-scale vibrational

modes in the crystalline state. By contrast, protein crystals

contain anywhere from 10 to 90% solvent, with 40–60% being

typical. This means that the protein molecules within the

crystal lattice are relatively loosely packed. They are corre-

spondingly less constrained by lattice packing than crystalline

small molecules. Even in the crystalline form, protein domains

or subunits may be free to flex relative to each other,



secondary-structural elements may exhibit local displace-

ments, and individual side chains may exhibit torsional

flexibility.

These various hierarchies of vibrational freedom can be

modeled by describing the protein as consisting of multiple

approximately rigid groups, each undergoing TLS (transla-

tion/libration/screw) displacement (Schomaker & Trueblood,

1968). We show here that such multi-group TLS models of

protein structure can yield improved residuals R and Rfree

compared with conventional crystallographic isotropic or

anisotropic refinement. Moreover, such models may reveal

intrinsic biologically relevant properties of the protein such as

the deformability and local flexibility of a ligand-binding site.

1.2. Crystallographic models of flexibility and vibrational
motion

Conventional crystallographic models account for the

effects of both dynamic and static disorder on X-ray diffrac-

tion by introducing additional parameters describing the

probabilistic displacement of each atom about its mean posi-

tion in the lattice (Willis & Pryor, 1975; Trueblood et al., 1996).

These atomic displacement parameters (ADPs) can be either

isotropic or anisotropic. The isotropic form is familiarly

encountered as a correction to the atomic scattering factor

f2 = f 2
0 expð�Biso sin2 �=�2Þ, where f0 is the scattering factor for

an atom at rest and f is the corrected form that accounts for

displacement. The isotropic ADP describes a spherical

Gaussian and in the present context it is useful to realise that

Biso = 8�2
hu2
i, where hu2

i is the mean-square positional

displacement. Similarly, the anisotropic correction is a 3 � 3

symmetric tensor Uij describing a trivariate Gaussian prob-

ability density function for the location of the atomic center.

Biso is commonly called a ‘thermal parameter’ and the real-

space representation of Uij is commonly called a ‘thermal

ellipsoid’. This is misleading, however, as the ADP describes

both dynamic (thermal) and static contributions to the total

displacement (Trueblood et al., 1996; Bürgi, 2000).

If modeled separately for each atom, the isotropic form

requires a total of four model parameters per atom (x, y, z, Biso),

while the anisotropic form requires a total of nine model

parameters per atom (x, y, z, U11, U22, U33, U12, U13, U23). This

is an important point, because only very high resolution

diffraction experiments provide enough observations to

support refinement of a model containing nine parameters per

atom. ADPs, either isotropic or anisotropic, are by definition a

property of individual atoms. They are therefore a better

model for very localized vibrational motion, e.g. along-bond

vibration, than for large-scale motions involving many atoms

acting in concert. The use and interpretation of anisotropic

ADPs associated with individual atoms is well established in

small-molecule crystallography, where local vibrational modes

dominate. The atomic Uij terms can be used, for instance, to

correct for the effect of vibrational modes on apparent bond

lengths (Dunitz et al., 1988).

TLS (translation/libration/screw) models constitute an

alternative way of describing vibrational modes. Just as for

individual ADPs, TLS parameterization of atomic displace-

ment in a crystal structure does not strictly speaking describe

actual motion; the description encompasses both dynamic

displacement (thermal motion) and static displacement

(trapped microconformers). For practical purposes, both of

these contributions yield the same probabilistic positional

variance about the refined mean coordinates.

In the TLS formalism, rigid-body displacement of an arbi-

trary set of atoms is described by a set of 20 parameters

(Schomaker & Trueblood, 1968). These parameters constitute

three 3 � 3 tensors: T, L and S. T is a symmetric tensor with

elements given in units of Å2; it describes the anisotropic

translational displacement common to all atoms in the rigid-

body group. L is also a symmetric tensor with elements in units

of rad2; it describes the rotational component (libration) of the

rigid-body displacement. The S tensor is not usually

symmetric; it describes the correlation between the rotation

and translation of a rigid body undergoing rotation about

three orthogonal axes that do not intersect at a common point.

For small amplitudes of vibration, the locus of points visited

by any given atom in the vibrating group can be approximated

as a three-dimensional Gaussian, i.e. a ‘thermal ellipsoid’

corresponding to some set of Uij for that atom. Let this

approximation be called U
ij
TLS. For an atom located at point

(x, y, z) with respect to the TLS tensor origin, the six unique

components U
ij
TLS for that atom may be calculated using

equations equivalent to those of Schomaker & Trueblood

(1968),

U11
TLS ¼ L22z2

þ L33y2
� 2L23yzþ 2S21z� 2S31yþ T11;

U22
TLS ¼ L11z2

þ L33x2
� 2L13xz� 2S12zþ 2S32xþ T22;

U33
TLS ¼ L11y2 þ L22x2 � 2L12xy� 2S23xþ 2S13yþ T33;

U12
TLS ¼ �L33xyþ L23xzþ L13yz� L12z2

þ ðS22 � S11Þzþ S31x� S32yþ T12;

U13
TLS ¼ �L22xzþ L23xy� L13y2

þ L12yz

þ ðS11
� S33

Þyþ S23z� S21xþ T13;

U23
TLS ¼ �L11yz� L23x2 þ L31xyþ L12xz

þ ðS33
� S22

Þxþ S12y� S13zþ T23: ð1Þ

Thus, a single set of 20 TLS parameters describes the indivi-

dual displacements of all atoms within the vibratory group. For

any group larger than three atoms, the TLS description is

more parsimonious than describing each atom separately by

six ADP parameters Uij.

1.3. Post hoc generation of TLS models from existing
refinements

The use of TLS models in crystallography has arisen in two

distinct contexts. In small-molecule crystallography, TLS

models are generated via post hoc analysis of a refined

structure in order to explore whether the individual refined

atomic displacements may be explained as concerted vibration

of a larger group of atoms (Schomaker & Trueblood, 1968; He

& Craven, 1993). For example, it may be that the individual

thermal ellipsoids refined for the atoms in a six-membered
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ring are adequately explained by a rocking motion of the

entire ring about some axis. In this context, the TLS model

serves as a simplified description approximating a much more

complicated underlying model that has already been refined

against atomic resolution data. The same sort of post hoc

analysis may be applied to protein structures in order to

identify portions of the model that act approximately as rigid

bodies. Sternberg and coworkers first showed that a single-

group TLS model can be used to approximate the distribution

of isotropic B values observed in a previously refined structure

of hen egg-white lysozyme (Sternberg et al., 1979). This

approach was later extended by Kuriyan and Weis, who fitted

a separate TLS group to each monomer of trimeric hem-

agglutinin at 3 Å resolution and fitted separate TLS groups to

two previously identified subdomains of glutathione reductase

at 1.5 Å (Kuriyan & Weis, 1991). These studies demonstrated

that the observed distribution of B values within a structure

can be partially explained as arising from bulk displacement of

the protein, subunits or subdomains. However, they did not

address the question of how one might in general identify such

approximately rigid groups directly from a refined structure.

1.4. Use of TLS models in crystallographic refinement

The direct refinement of a TLS model against crystallo-

graphic data, as opposed to constructing it post hoc from a pre-

refined model, is a distinct case. Perhaps surprisingly, this is an

easier computational task. Refinement of TLS models against

protein crystallographic data was first introduced in the

programs RESTRAIN and TLSANL (Driessen et al., 1989;

Howlin et al., 1993). These programs were used to model

domain motion in protein structures refined at modest reso-

lution (2.5 Å) (Moss et al., 1996; Papiz & Prince, 1996). Howlin

and coworkers refined a model of ribonuclease A at 1.45 Å

consisting of one TLS group per side chain (Howlin et al.,

1989). This ability to refine TLS parameters was later incor-

porated into the primary CCP4 refinement program

REFMAC5 (Murshudov et al., 1999; Winn et al., 2001).

Because REFMAC5 is in widespread use, the use of simple

TLS models increased greatly at that point. Roughly 1000

structures deposited with the PDB since 2000 have incorpo-

rated TLS models refined in REFMAC5. Most of these

refinements have introduced only a single TLS group into the

model or, in the case of oligomers, one TLS group per poly-

peptide chain. This can lead to a significant improvement in

the crystallographic residuals R and Rfree. However, we will

show here that appropriate choice of a larger number of TLS

groups can yield substantial additional improvement in the

crystallographic residuals at all resolutions. The obviously

missing piece is a procedure for identifying which parts of a

protein may usefully be modeled as belonging to any one TLS

group.

1.5. Identification of TLS groups within a refined structure

When the starting point for analysis is a high-resolution

crystal structure that has been refined with anisotropic ADPs,

then one possible approach to identifying approximately rigid

groups is to use Rosenfield’s rigid-body postulate (Rosenfield

et al., 1978). This postulate states that if the ADPs for any two

atoms are entirely a consequence of their joint membership of

a larger rigid-body group, then clearly the two ADPs should

have the same integrated displacement probability along the

vector joining them. So in principle one can search for groups

of atoms in a refined structure whose ADPs all agree with each

other when considered pairwise. This test was first imple-

mented for small molecules in the programs THMB and

THMI (Trueblood, 1978). More recently, it was revisited by

Winn for use with protein structures in the program

ANISOANL (Winn et al., 2001). Several applications to

specific proteins have been reported (Yousef et al., 2002;

Wilson & Brunger, 2000; Bernett et al., 2004), but in general it

is very difficult to delineate multiple self-consistent almost

rigid groups above the background noise of non-rigid contri-

butions to the ADPs and of imperfect refinement. The

observed displacements of individual protein atoms will

always contain significant components which deviate from the

rigid body ideal owing to the fact that vibrations and confor-

mational changes in proteins are at best only approximately

rigid-body displacements.

Furthermore, most macromolecular crystals do not diffract

well enough to permit refinement of individual atomic aniso-

tropic thermal parameters in the first place. Therefore, a

different approach is needed which can handle structures

refined with isotropic ADPs. An additional concern is that in

most cases we have little prior knowledge of how well any TLS

model will describe the protein structure at hand. This is

highly dependent on the quality of the crystal lattice and on

the nature of conformational flexibility uniquely characteristic

of this protein. Therefore, it is reasonable to formulate the

search for possible component groups of a multi-group TLS

model as an optimization problem without any preconceived

requirements on the quality of the fit. With this in mind, we

have developed an optimization algorithm which, for a given

protein chain in a crystal structure, finds the optimal partition
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Table 1
Notation used in this work.

ADP Atomic displacement parameter.
Uiso Isotropic ADP as it would result from direct refinement

against diffraction data by conventional isotropic refine-
ment. Biso = 8�2Uiso.

UTLS Estimated component of an isotropic ADP arising from TLS
motion. The work reported in this paper used UTLS =
(1/3)trace(U

ij
TLS), but other estimates are possible.

Uobs Net isotropic ADP from refinement against diffraction data.
For conventional isotropic refinement, Uobs = Uiso. In the
presence of explicit TLS models, Uobs = Uiso + UTLS.

U
ij
obs Anisotropic ADP refined directly against diffraction data

using conventional anisotropic refinement.
U

ij
TLS Anisotropic ADP derived by applying a particular set of TLS

parameters to a particular atom (1).
UTLSiso Isotropic ADP derived by applying a restricted set of TLS

parameters to a particular atom (3).
Ueq Isotropic approximation to an anisotropic ADP Uij, defined as

Ueq = (1/3)trace(Uij) (Trueblood et al., 1996).



of the chain into any desired number of contiguous TLS

groups along its amino-acid sequence.

2. Algorithmic methods

The notation used in this work is given in Table 1.

2.1. Fitting a TLS model to an existing set of anisotropic ADPs

The 20 parameters of a TLS model may be fitted to the

refined anisotropic ADPs of a group of atoms. By treating

atomic positions as fixed, the quadratic terms in (1) become

constants and the expressions relating TLS parameters and

ADPs become linear. In matrix form, solving for the TLS

parameters is accomplished by solving the matrix equation

Ax = b, where A is a matrix containing six rows for each atom

and 20 columns corresponding to each TLS parameter, x is a

column vector of the 20 unknown TLS parameters and b is a

column vector containing the six terms U
ij
obs of the observed

anisotropic ADP. The elements of A are a function of each

atom’s position (x, y, z) from an arbitrary origin.

To uniquely determine the 20 TLS parameters, there must

be Uij terms for at least four atoms in each group. However,

these terms may contain non-TLS contributions and will

inevitably contain noise. Therefore, it is desirable to include

enough atoms in the group so that A is overdetermined,

allowing any noise and non-rigid contributions to the ADPs

to average out. Even so, the matrix is occasionally ill-

conditioned. When this is the case, some methods of solving

for A�1 such as LU decomposition will fail and the most

reliable method of solving for x is by singular value decom-

position. Any column degeneracies which exist in A are

detected as small singular values which can be filtered out.

TLSMD uses double precision variables for A and filters all

singular values which are smaller than 1 � 10�12 of the largest

singular value. The LAPACK subroutine DGESDD is used to

perform the singular value decomposition (Anderson et al.,

1999).

Since the ADPs of refined crystal structures rarely include

experimental standard deviations, it is not possible to weight

the contribution of individual ADPs to the minimized residual

using the standard weighting w = 1/�2. Therefore, TLSMD

defaults to using unit weights for all atoms. However, there is a

strong correlation between error and overall ADP magnitude,

so we have also implemented an empirical weighting w = U�1
eq

for each atom. This has the effect of down-weighting the

contribution of side chains that are poorly ordered and of side

chains with substantial displacement contributions from

vibration about internal torsion angles. In either case, the

weight calculated for each atom is further multiplied by the

occupancy of that atom.

The anisotropic ADPs calculated from the resulting TLS

parameters may then be compared with the target ADPs and

the accuracy of the calculated ADPs assessed. For anisotropic

ADPs, the weighted least-squares residual for a group of k

atoms is given by

RTLSaniso ¼

P
wkðU

ij
k;obs � U

ij
k;TLSÞ

2

P
wk

: ð2Þ

2.2. Fitting a TLS model to an existing set of isotropic ADPs

Fitting TLS parameters to isotropic ADPs requires a

modified form of (1) that predicts isotropic ADPs instead of

anisotropic ADPs. The modified form contains only ten of the

20 parameters of the anisotropic TLS description. The first

three equations in (1) can be combined with the definition of

Ueq to yield (Sternberg et al., 1979)

UTLSiso ¼Tiso þ
1
3½L

11ðy2 þ z2Þ þ L22ðx2 þ z2Þ þ L33ðx2 þ y2Þ

� 2L12xy� 2L13xz� 2L23yzþ 2S1zþ 2S2yþ 2S3x�:

ð3Þ

In this equation, the off-diagonal elements of the S tensor

appear only as the differences S1 = S21
� S12, S2 = S13

� S31 and

S3 = S32
� S23. The anisotropic description of TLS translation

described by the T tensor also collapses to a single isotropic

parameter, Tiso. The design matrix A for the isotropic TLS

model contains one row per atom and ten TLS parameter

columns. The isotropic TLS model can correctly calculate the

value of Uiso for rigid bodies and therefore the least-squares

residual

RTLSiso ¼

P
wkðUk;obs � Uk;TLSisoÞ

2

P
wk

ð4Þ

yields the correct quality-of-fit estimate for a group of k atoms

as a rigid body. However, parameters which are required for

interpreting the TLS parameters as rigid-body screw and

translational displacements are missing from the isotropic TLS

model. This is an intrinsic problem with post hoc fitting of a

TLS description to purely isotropic ADPs, but it can be

remedied by the introduction of external constraints. It can

also be remedied by taking the TLS model back into crystal-

lographic refinement, where the full anisotropic set of TLS

parameters is refined (Winn et al., 2001).

2.3. Constrained refinement of TLS parameters

If the set of equations (1) is used to solve for TLS para-

meters without additional constraint, the resulting solution

may lie anywhere in a 20-dimensional space. However, only a

portion of this space corresponds to true rigid-body motion.

Therefore, an unconstrained fit of TLS parameters to noisy

data often yields a solution that does not describe a physically

plausible motion. This is exemplified by considering the

eigenvalues of the L tensor. These represent the group’s

mean-square rotational displacement about three orthogonal

axes and should always be �0. If an eigenvalue of L is nega-

tive, this has the physical interpretation that atoms further

from the libration axis move less than atoms close to the

libration axis, which clearly violates the assumption of rigid-

body motion used to derive the TLS description. This is not a

major problem if the TLS model is used purely in the context

of structure refinement, since the B factors and positions of
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the individual atoms are still adequately restrained (Winn et

al., 2001). However, the validity of the refined TLS model

parameters as a description of component vibrational modes

within the protein is called into question.

Therefore, when searching for optimal multi-group TLS

descriptions of a previously refined protein, we originally

discarded any descriptions which contain groups with negative

L eigenvalues. This was unsatisfactory, however, because

retrospective analysis showed that the assignment of residues

to potential TLS groups was often reasonable even though the

principal components of L had been poorly determined. We

have therefore reparameterized the original Schomaker–

Trueblood equations to express all components of L as arising

from the square of three orthogonal principal components

(u, v, w) and a rotation matrix R��� defined by Euler angles

(�, �, �),

L ¼ R���

u2 0 0

0 v2 0

0 0 w2

0
@

1
ART

��� : ð5Þ

The refinement of a TLS model can be reformulated in terms

of these new parameters rather than directly refining the

components of L. This strictly constrains L to describe a true

rigid-body librational displacement. The change in variables

also transforms minimization into a non-linear problem, but

minimization is still straightforward using the Levenberg–

Marquardt algorithm. An alternative constraint method

applied directly to refinement of the off-diagonal terms of L

was suggested by Winn et al. (2001). Ideally, similar constraints

should be developed for the S and T tensors as well.

2.4. Optimal partitioning as a graph-minimization problem

The TLSMD algorithm finds the optimal one-group, two-

group, three-group, . . . , p-group partition of a single protein

chain into multiple TLS groups. The partitioning is performed

by breaking the chain into non-overlapping contiguous

segments that together span the entire protein chain. For this

partitioning scheme, the problem can be restated as follows:

given a set S, the set of all possible segments of a protein chain,

select p contiguous non-overlapping segments from S which

span the chain such that the sum of the TLS fit residuals for

these segments is lower than the sum for any other choice of

segments. This selection requires that the set S be constructed

and that each segment in S be individually fitted with TLS

parameters to yield a TLS fit residual. It is also desirable to

impose a lower limit m on the number of residues in any given

segment to ensure there are enough data points from ADPs to

completely determine the TLS parameters. With this

constraint, the number of segments s(n, m) in the set S may be

calculated by s(n, m) = [n(n + 1)/2]�
Pm

i¼2(n + 1� i), where n

is the number of residues in the chain and m is the minimum

number of residues in a segment. Once the set S is constructed,

an exhaustive search may be used to calculate the TLS resi-

dual sum of all unique p segment partitions, or configurations,

of the chain and select the configuration with the lowest

residual.

TLSMD is implemented as a two-stage process. The first

stage performs a least-squares fit of the TLS parameters to all

possible segments in a protein chain (the set S) and stores the

results in a database. The second stage searches for a selection

of segments that together describe the entire chain and have

the minimum summed residual. This is computationally

expensive, because the number of configurations grows

rapidly with increasing n and p.

2.4.1. Constructing a graph over a protein chain using TLS
segments. Remarkably, by posing the search for the config-

uration with minimum residual as a shortest path problem

over a weighted directed graph, the solution may be found in

order O(np) time using a variant of the Bellman–Ford algo-

rithm (Bellman, 1958; Ford & Fulkerson, 1962). A graph is

constructed to represent a protein chain of n residues as

follows: a source vertex vs = v1 is constructed preceding the

first residue, the vertex vi+1 is constructed between residues i

and i + 1 and the destination vertex vd = vn+1 is constructed

following the last residue. Thus, the vertices of the graph lie

between adjacent amino-acid residues and edges connecting

them may be viewed as spanning contiguous segments of the

protein chain. In the context of this optimization algorithm the

edges represent TLS segments (Fig. 1) and any given set of

edges forming a path from the source vertex vs to destination

vertex vd is equivalent to a set of adjacent protein segments

which span the chain. For a given segment containing residues

i to j, a corresponding edge is added to the graph connecting

vertex vi to vertex vj+1 with weight equal to the number of

residues times the weighted TLS residual (4) for that segment:

cost = (j � i + 1)RTLS. This graph has two important features

which simplify the algorithm required to find the shortest path.

There are no cycles in the graph and there are no negative

edge weights.

A modified version of the Bellman–Ford shortest path

algorithm (provided as supplementary material1) is used to
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Figure 1
The graph constructed in stage 2 of the TLSMD algorithm for finding the
optimal segmentation of a peptide chain into multiple contiguous TLS
groups.

1 Supplementary material has been deposited in the IUCr electronic archive
(Reference: SX5049). Details for accessing these data are given at the back of
the journal.



find the least-cost path from vertex v1 to vertex vn+1. Each

iteration solves for the shortest path containing one additional

edge. Thus, the first iteration trivially yields the shortest path

using a single edge, i.e. the entire chain. The second iteration

yields the shortest path using at most two edges and so on.

Since graph edges correspond to TLS groups, iteration p yields

the optimal p-group TLS partition of the protein chain into

segments.

3. Experimental methods

3.1. Refinement protocols

For each test case presented here, the starting point for

TLSMD analysis was a model generated by conventional

refinement of the protein using REFMAC5 with one isotropic

ADP, Bobs, for each atom. In the case of structures drawn from

the PDB (1kp8, 1y7p), this starting model was generated by

subjecting the PDB entry to ten cycles of conventional

isotropic refinement in REFMAC5.

The starting model was submitted to TLSMD analysis using

unit weights for each atom as described above. 20 separate

models for each structure were generated for subsequent

crystallographic refinement. These corresponded to selection

of the optimal one-group, two-group, . . . , 20-group TLS

partition of each peptide chain in the structure as found by

TLSMD. Each model is described by a pair of files: a tlsin

file containing the parameters fitted for each TLS group in the

model during TLSMD analysis and a PDB-format xyzin file

containing the atomic coordinates from the starting model

paired with modified Biso values.

Refinement of TLS parameters against crystallographic

data employed a locally modified version of REFMAC5 that

uses singular value decomposition rather than eigenvalue

filtering to solve for TLS parameter shifts.

3.1.1. Pure TLS refinement. In this refinement protocol, the

ADP for every protein in the structure is described entirely by

the TLS parameters for the TLS group to which it belongs.

The modified xyzin file provided to REFMAC5 contains

Biso = 0 for all protein atoms and Biso = Bobs for all non-protein

atoms. The refinement consists of five cycles of TLS refine-

ment during which only the TLS parameters are refined

against the crystallographic data Fobs. All other model para-

meters remain fixed; i.e. there is no coordinate refinement or

modification of the non-protein thermal parameters.

3.1.2. TLS + Biso refinement. In this refinement protocol, a

supplemental isotropic contribution Biso for each protein atom

is refined in addition to the TLS parameters. After TLSMD

analysis, we have an estimated isotropic ADP component

UTLS = (1/3)trace(U
ij
TLS) for each protein atom arising from the

TLS model constructed for its particular TLS group. This

component can be subtracted from the original input ADP,

Uobs, to yield an estimate for the non-TLS component of the

ADP, Uiso = Uobs � UTLS. The atoms of each TLS group are

then inspected to find the smallest value of Uiso for that group.

If necessary, the T tensor is modified to shift some of the

displacement amplitude out of T and into the individual Uiso

values for atoms in that group, guaranteeing that Uiso is always

positive and greater than some minimum value. The Uiso

values are converted to Biso and used to create an xyzin file

for subsequent refinement. The TLS parameters, including the

modified T tensor, are used to create a corresponding tlsin

file. Non-protein atoms retain their original Biso. The subse-

quent REFMAC5 refinement against Fobs consists of five

cycles of TLS-parameter refinement followed by ten cycles of

joint coordinate and ADP refinement for both protein and

non-protein atoms.

3.1.3. TLS-restrained anisotropic refinement. This refine-

ment protocol is based on local modifications to REFMAC5

that allow an input TLS model to be used as a restraint during

full anisotropic refinement of Uij terms for each protein atom.

The restraint is applied as an additional term in the overall

residual being minimized, equivalent to (1). Preparation of

tlsin and xyzin proceeds as in the TLS + Biso protocol.

After five cycles of TLS refinement in REFMAC5, each

protein atom has an associated ADP that consists of an

anisotropic description U
ij
TLS from the TLS model and an

isotropic contribution Biso that was present in the xyzin file.

The modified program combines these by adding the isotropic

component into the diagonal terms of U
ij
TLS and writes our a

PDB-format file containing anisou records corresponding to

an anisotropic ADP for each protein atom. Two copies of this
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Figure 2
(a) The least-squares residual RTLSiso resulting from fitting one-group,
two-group, . . . , 20-group TLS models to the Biso values obtained by
conventional isotropic refinement of E. coli GroEL (PDB code 1kp8).
Residuals are shown here for each of the 14 crystallographically
independent chains in the unit cell. The shape of these curves may be
compared with the crystallographic R factors obtained from subsequent
refinement of the corresponding multi-group TLS models (Fig. 7). (b)
The optimal three-group partition for each chain based on the analysis
shown in (a). Residue numbers are shown at the top; domain assignments
proposed for this structure by Chaudhry et al. (2004) are shown
underneath. Figs. 2(b) and 3 were prepared using TEXshade (Beitz, 2000).



file are then provided as input to a second run of the modified

REFMAC5. One copy is presented as a standard xyzin file

describing a starting model for anisotropic refinement. The

second copy is presented as a file of restraint targets. All other

ADP restraints to protein atoms are disabled. Non-protein

atoms are treated as purely isotropic. For the refinement of

Leishmania braziliensis initiation factor 5A at 1.6 Å, ten cycles

of joint coordinate and restrained anisotropic ADP refine-

ment were then carried out. This refinement was run several

times in parallel, so that the weight of the TLS restraint

relative to other terms in the minimized residual could be

adjusted to yield a final mean anisotropy of 0.45 for the

protein atoms (Merritt, 1999).

4. Results

4.1. Output from TLSMD analysis

Fig. 2(a) shows the net TLS residual RTLSiso resulting from

use of an increasing number of TLS groups to model the

observed B factors from previous conventional refinement of

Escherichia coli GroEL (PDB code 1kp8). The shape of this

curve is dependent on the individual protein, but is expected

to correlate with the improvement in crystallographic resi-

duals R and Rfree that would be achieved by taking the

corresponding p-group TLS model into further crystallo-

graphic refinement. In the case of GroEL, a three-group

model is dramatically better at explaining the observed

distribution of Biso values in the deposited structure than

either a one- or two-group model.

TLSMD analysis is performed on all chains present in the

unit cell. This offers the opportunity to compare the result of

analyzing chains related by non-crystallographic symmetry.

Since NCS-related chains will in general have different lattice

contacts, we do not necessarily expect the overall magnitude

of their net vibrational mode within the lattice to be the same,

nor do we necessarily expect the magnitude of the TLS resi-

dual as shown in Fig. 2(a) to be the same. However, to the

extent that TLSMD succeeds in identifying groups whose

relative flexibility is an intrinsic property of the protein, we

expect the shape of the residual curve to be the same for all

copies. Furthermore, and more importantly, the optimal

partition of the chain into p groups should identify similar

segment boundaries in each crystallographically independent

copy (Fig. 2b).

4.2. Crystallographic refinement of multi-group TLS models

We have used structures determined as part of the SGPP

structural genomics consortium as test cases for refinement of

multi-group TLS models generated by TLSMD analysis.

Multi-group models were of substantial benefit in many but

not all cases. For eight of these structures (PDB entries 2a0k,

2a0u, 2ar1, 1x6o, 1xo7, 1xq9, 1xtd and 1zso) a multi-group TLS

model was evaluated as significantly better than either

conventional isotropic B refinement or refinement of a single-

group TLS model supplemented by individual Biso terms. Two

of these are structures of eukaryotic initiation factor 5A from

the related species Leishmania mexicana and L. braziliensis.

Both homologs contain 166 residues and share 96% sequence

identity. Crystals of the L. mexicana protein diffract poorly

compared with those of the L. braziliensis protein but are

essentially isomorphous, so these constitute a controlled pair

of data sets for trial application of TLSMD at different reso-

lutions.

4.2.1. L. mexicana eukaryotic initiation factor 5A at 2.7 Å
resolution. The plot of RTLSiso versus number of TLS groups

for this structure suggested that inclusion of at least three TLS

groups was warranted, although not as dramatically as the plot

in Fig. 2. The optimal three-group partitions found by TLSMD

for the two IFSA homologs are shown in Fig. 3. The two

analyses agree well despite the large difference in resolution

of the two input structures.

Conventional refinement of the L. mexicana structure

yielded R = 0.198, Rfree = 0.250, which is somewhat better than

expected at this resolution, probably owing to the fact that the

original structure solution used the 1.6 Å structure of the

L. braziliensis homolog as a starting point. In this case,

refinement of a pure TLS model is not an improvement. In fact

Rfree begins to rise if more than 15 TLS groups are chosen,
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Figure 3
Optimal partition into three TLS groups of two close homologs. Analysis
of the 2.7 Å L. mexicana structure agrees well with that of the 1.6 Å
resolution L. braziliensis structure. The two initiation factor 5A homologs
differ in sequence at seven residues.

Figure 4
Crystallographic refinement of multi-group TLS models for L. mexicana
initiation factor 5A. This 2.7 Å data set was collected from a SeMet form
of the protein. The R and Rfree residuals from conventional refinement
with individual isotopic B factors are shown as thin horizontal lines. The
dotted lines track the residuals from pure TLS refinement (individual
atoms are described only the TLS model, with no individual Biso

component). The heavy solid lines correspond to refinement of TLS
models supplemented by individual Biso components.



indicating that addition of these additional parameters to a

pure TLS model is not justified. On the other hand, refinement

of the TLS + Biso model yields better Rfree values than

conventional refinement for any number of TLS groups and

better R values than conventional refinement for nine or more

TLS groups (Fig. 4).

4.2.2. L. braziliensis eukaryotic initiation factor 5A at
1.6 Å resolution. This example is particularly striking in that

even a pure TLS model performs well compared with

conventional refinement of individual Biso values. The

crystallographic model contains 1070 protein atoms. Thus,

conventional isotropic refinement requires 1070 thermal

parameters, while a 20-group pure TLS model requires only 20

� 20 = 400 thermal parameters. Conventional isotropic

refinement yielded R = 0.177, Rfree = 0.210. A 20-group pure

TLS model refines to R = 0.178, Rfree = 0.200. Thus, R is

equivalent to that from conventional refinement, while Rfree is

significantly better. A similar preference for multi-group pure

TLS refinement over conventional refinement as judged by

Rfree was previously reported by Winn et al. (2001) for a 2.05 Å

refinement of GAPDH. In the present case, TLS + Biso

refinement protocol yields better residuals R and Rfree for any

number of TLS groups (Fig. 5).

Although 1.6 Å resolution is insufficient for reliable aniso-

tropic refinement using conventional protocols, we were

interested in evaluating the utility of multi-group TLS models

as restraints for fully anisotropic refinement. Conventional

anisotropic refinement in REFMAC5 yielded R = 0.149,

Rfree = 0.190. The standard ADP restraints (rbon bfac sphe)

were adjusted to minimize Rfree, which resulted in a mean

anisotropy of 0.59 (0.12), somewhat more spherical than

typical near-atomic resolution structures (Merritt, 1999).

Using the 20-group TLS model as a restraint rather than using

the standard ADP restraints yielded R = 0.150, Rfree = 0.186.

The resulting mean anisotropy was 0.50 (0.16), somewhat

closer to the typical value of 0.45. Thus, the residuals from

restrained anisotropic refinement are only marginally better

than those of the 20-group TLS + Biso model itself, while the

total number of thermal parameters increases drastically from

1070 � 1 + 20 � 20 = 1470 for the TLS + Biso to 1070 � 6 =

6420 for full anisotropic treatment. It is apparent that the TLS

+ Biso model is statistically preferred over restrained aniso-

tropic refinement.

4.2.3. Hypothetical protein AF1403 at 1.9 Å resolution.

PDB entry 1y7p is a hypothetical protein from Archeoglobus

fulgidus selected as structural genomics target AF1403 (R.

Zhang, T. Skarina, A. Savchenko, A. Edwards & A. Joachi-

miak, unpublished work). This is a 223-residue protein of

unknown function, although it is structurally homologous to

several sugar-binding proteins and the crystal structure

contains one bound ribose molecule per protein chain. The

structure is a dimer, with one and a half dimers in the asym-

metric unit. The original refinement deposited with the PDB
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Figure 5
Crystallographic refinement of multi-group TLS models for L. brazil-
iensis initiation factor 5A. This 1.6 Å data set was collected from a native
(SMet) form of the protein. The R and Rfree residuals from conventional
refinement with individual isotopic B factors are shown as thin horizontal
lines. The dotted lines track the residuals from pure TLS refinement
(individual atoms are described only for the TLS model, with no
individual Biso component). The heavier solid lines correspond to
refinement of TLS models supplemented by individual Biso components.
The heavy dashed lines correspond to TLS + Biso refinement followed by
restrained anisotropic refinement in which individual Uij terms are
restrained to agree with the U

ij
TLS values predicted by the TLS model.

Figure 6
(a) The least-squares residual RTLSiso resulting from fitting multi-group
TLS models to the Biso values obtained by conventional isotropic
refinement of the three crystallographically independent chains of
AF1403 (PDB code 1y7p). (b) Crystallographic refinement of multi-
group TLS models for AF1403. The R and Rfree residuals from
conventional refinement with individual isotopic B factors are shown as
thin horizontal lines. The dotted lines track the residuals from pure TLS
refinement, while the heavier solid lines correspond to refinement of TLS
models supplemented by individual Biso components.



contained no TLS model and had crystallographic residuals

R = 0.211, Rfree = 0.255.

Fig. 6(a) shows the result of TLSMD analysis applied to the

conventionally refined structure and Fig. 6(b) the result of

subsequent multi-group TLS refinement. Following our stan-

dard TLS + Biso protocol, inclusion of a single TLS group per

chain lowered R from 0.200 to 0.182 and lowered Rfree from

0.242 to 0.227 compared with conventional isotropic B-factor

refinement. Inclusion of a second TLS group per chain yielded

another slight drop in the residuals, but inclusion of three or

more TLS groups per chain using the TLS + Biso protocol did

not yield substantial additional improvement. We interpret

this as indicating significant anisotropic displacement of each

atom in the structure arising from overall vibration of the

protein within the crystal lattice, anisotropy which is well

described by TLS motion of the entire molecule. TLSMD

analyses of the three crystallographically independent chains

agreed identically that the incremental improvement seen

from partitioning each chain into two TLS groups corresponds

to a split into an N-terminal domain and a C-terminal domain,

with a hinge point at residues 80–81. The remaining net

displacement of atoms in the structure is small enough that

inclusion of conventional Biso parameters for each atom easily

accounts for the total magnitude, which is why the residuals

for TLS + Biso refinement are flat beyond two TLS groups in

Fig. 6(b). On the other hand, it is striking that pure TLS

models, with no individual Biso terms, continue to yield

significantly improved crystallographic residuals as groups are

added. The residuals for a pure TLS model with 12 groups per

chain are better than for conventional Biso refinement and are

still improving at least to the point of 20 groups per chain

despite the reduction in the total number of protein thermal

parameters from 4898 (one Biso per protein atom) in the

conventional Biso model to 1200 (20 � 20 for each of three

chains) for a pure TLS model with 20 groups per chain. The

continuing drop in crystallographic residual as more groups

are added to the pure TLS model supports the idea that these

groups describe real, if small, vibrational modes in the protein

structure.

4.2.4. GroEL at 2.0 Å resolution. We next show results from

refinement of a large structure at medium resolution. The

E. coli chaperonin GroEL forms a 14-mer with 547 residues

per chain and has been studied crystallographically by a

number of groups at resolutions from 3.6 to 2.0 Å. Chaudhry et

al. (2004) reported an analysis of several GroEL complexes

based on TLS refinement; each chain was split into three TLS

groups by manual assignment of domain boundaries and

comparison to Rosenfield analysis performed by the program

ANISOANL. We chose the 2.0 Å GroEL structure (PDB code

1kp8) reported by Wang & Boisvert (2003) as the starting

point for TLSMD analysis to avoid any possible bias by

previous TLS treatment of the crystallographic model.

This is a large structural model, consisting of residues 2–526

in each of 14 chains. Each chain contains three distinct

domains: an apical domain consisting of residues 191–374, an

intermediate domain consisting of residues 136–190 and 375–

409 and an equatorial domain consisting of residues 2–135 and

410–525 (Chaudhry et al., 2004). It is striking that the three-

group TLS models generated by TLSMD refine dramatically

better than the one- or two-group models (Fig. 7). However,

the N-terminal and C-terminal TLS groups in the three-group

model should properly both be recognized as belonging to the

same (equatorial) domain. Because the two-stage TLSMD

algorithm assigns only contiguous residues to any one TLS

group, it does not notice that these two groups may be merged

into a single larger group. The same limitation arises with

regard to the intermediate domain, which also contains non-

contiguous chain segments. Thus, in its current state TLSMD

would need a five-group model to describe the three actual

domains. This limitation may be overcome by adding a third

stage to the TLSMD algorithm, in which previously identified

groups may be merged (Fig. 8b).

Pure TLS models yield better R and Rfree than conventional

isotropic refinement if the chain is broken into nine or more

contiguous groups. This is despite a 20-fold reduction in the

total number of thermal parameters from 53 970 in the

conventional isotropic model to 2520 in the nine group per

chain pure TLS model. The TLS + Biso models have better R

and Rfree than conventional isotropic refinement for any

number of TLS groups, although Rfree decreases only

marginally with the partition of each chain into more than

three groups.

5. Discussion

5.1. TLS models of nested vibrational modes

It may seem inconsistent to model a nested hierarchy of

dynamic groups using a linear sequence of rigid-body

segments. That is, if a particular flexible loop lies within a

larger domain undergoing hinge motion, its net vibrational

motion contains contributions both from the local flexibility
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Figure 7
Crystallographic refinement of multi-group TLS models for E. coli
GroEL. The R and Rfree residuals from conventional refinement with
individual isotopic B factors are shown as thin horizontal lines. The
dotted lines track the residuals from pure TLS refinement (individual
atoms are described only for the TLS model, with no individual Biso

component). The heavier solid lines correspond to refinement of TLS
models supplemented by individual Biso components.



and from the bulk motion of the domain in which it is

embedded. It also contains contributions from the overall

vibration of the entire protein within the crystal lattice. Yet if

TLSMD assigns this flexible loop to its own chain segment, it

will be described by only one set of TLS parameters. Fortu-

nately, it is straightforward to show that the cumulative effect

of nested TLS motions can always be described by a single set

of TLS parameters.

Consider some group of atoms that is described by two

nested TLS models A and B. We know that the origin of the

TLS model tensors is arbitrary and may be shifted to any

choice of origin by appropriate transformation of the T and S

tensors (Schomaker & Trueblood, 1968). By shifting the TLS

descriptions of groups A and B to the same origin, it is easy to

see they combine to form an equivalent single TLS model C.

This is illustrated below by showing the equation for calcu-

lating one component of the ADP for an atom in C by

combining the contributions of A and B,

U11
C ¼ L22

A z2 þ L33
A y2 � 2L23

A yzþ 2S21
A z� 2S31

A yþ T11
A

þ L22
B z2
þ L22

B y2
þ L23

B yzþ 2S21
B z� 2S31

B yþ T11
B

¼ ðL22
A þ L22

B Þz
2 þ ðL33

A þ L33
B Þy

2 � 2ðL23
A þ L23

B Þyz

þ 2ðS21
A þ S21

B Þz� 2ðS31
A þ S31

B Þyþ ðT
11
A þ T11

B Þ

¼ L22
C z2
þ L33

C y2
� 2L23

C yzþ 2S21
C z� 2S31

C yþ T11
C :

Similar equations are obtained for the other terms U
ij
C of the

combined ADP.

This result assures us that we can describe the effect of

nested TLS groups without an explicit model for the nesting.

Nevertheless, physical interpretation of the multi-group TLS

model is complicated by this collapse of terms describing

several nested levels of motion into a single combined set of

parameters.

5.2. Limitations

5.2.1. Non-contiguous TLS groups. An obvious limitation of

the current TLSMD algorithm is that it only considers

contiguous runs of residues within a chain when searching for

TLS groups. It fails to identify the common case of a compact

protein domain made up of residues from several portions of

the chain. A common example is a domain containing residues

from both the N- and C-termini (Fig. 8a). We have considered

several possible ways of implementing a separate post-

processing step that would merge two or more groups

identified by the existing TLSMD algorithm into a single non-

contiguous TLS group. One promising approach is to assign a

score to potential mergers of two groups based on their ability

to cross-predict each other’s thermal parameters. Fig. 8(b)

shows a three-group partition of the 2 Å GroEL structure, in

which the TLS parameters fitted for residues 2–150 also

generate a low residual when applied to residues in the range

399–526 and vice versa. Neither of these two sets of TLS

parameters yields a good residual when applied to residues in

the intervening portion of the chain. Therefore, it would be

reasonable to combine both the N-terminal and C-terminal

segments into a single TLS group. This is in reasonably good

agreement with the literature characterization of the GroEL

equatorial domain as consisting of residues 2–136 and 410–525

(Chaudhry et al., 2004).

5.2.2. TLS-group boundaries are not identical to hinge
points or domain boundaries. The optimized boundaries

between adjacent TLS groups do not match up precisely to

specific hinge-point residues in the structure. Two portions of

the protein that are well described by TLS may be separated

by a short run of residues that are not so well described and

which constitute a hinge region rather than a hinge point. The

TLSMD analysis will place a break point somewhere within

this region, but since these residues are not well described by

the TLS parameters of either neighboring TLS group, the

precise placement of the break within the hinge region is

sensitive to small perturbations or noise in the input model for

these residues. Thus, in general the break points assigned for
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Figure 8
(a) Schematic topology of a two-domain protein in which one domain is
made up of chain segments from both the N- and C-termini. The TLSMD
algorithm will partition the chain into three groups A, B and C without
considering that A and C may properly belong to the same TLS group. (b)
One possible metric for evaluating whether two TLS groups should be
merged into a single group. After TLSMD analysis, each group has its
own set of TLS parameters which approximately predict the initial ADPs
observed for atoms belonging to that group. If the TLS parameters fitted
for one group are also found to predict also the ADPs observed for a
second group, this is an indication that the two groups are in fact non-
contiguous segments of a single larger group. The figure shows a three-
group partition for one chain in the 2 Å GroEL structure 1kp8, for which
the TLS parameters fitted for residues 2–150 also generate a low residual
when applied to residues in the range 399–526 and vice versa. Neither of
these two sets of TLS parameters yield a good residual when applied to
residues in the intervening portion of the chain. The arrows indicate
domain boundaries identified by the analysis of Chaudhry et al. (2004).



multiple NCS-related chains should not be expected to match

up identically. Furthermore, if the protein chain is partitioned

into many TLS groups, then the insertion of additional break

points into the middle of a larger group may obscure the

nature and extent of the larger group. For example, the

presence of a flexible loop in the middle of a large domain may

be correctly found and modeled, but this will split the original

single TLS group describing the domain into three TLS

groups. The bulk of the domain is still well described by the

original single set of TLS parameters, but the residues making

up this larger bulk are no longer contiguous. This is essentially

the same case illustrated in Fig. 8 and may be addressed in the

same manner by adding a post-processing step to identify and

merge compatible TLS groups.

5.2.3. Chain segments that are not well described by any
TLS model. Although the derivation of the TLS formalism

assumes a perfectly rigid group, even non-rigid groups may be

described well by TLS models for small amplitudes of motion.

Nevertheless, the observed displacements for some groups of

atoms may be poorly predicted by any TLS model, even for

small amplitudes of motion. TLSMD will not assign residues

in such a region to a group of their own precisely because they

are not described well by any TLS model and hence putting

them in a separate group will not usually improve the overall

TLS residual. However, for the purpose of inferring protein

dynamic properties, it would be useful to identify and label

such regions separately rather than including them in a

neighboring TLS group.

5.2.4. Relevance to protein–protein docking and other
applications. We have yet to systematically evaluate the

accuracy and utility of TLSMD-generated models for appli-

cations outside of crystallographic refinement. Nevertheless,

some case-by-case comparison is possible using individual

proteins that have been characterized previously by other

techniques. For example, Akif and coworkers have shown

good agreement between multi-group TLS models and

normal-mode analysis based on an elastic network model,

applying both techniques to a 3 Å structure of M. tuberculosis

thioredoxin reductase (Akif et al., 2005). A second opportu-

nity for comparison is the availability of a large number of

protein backbone motions collected in the Database of

Macromolecular Movements (MolMovDB; Echols et al.,

2003). These are generated by interpolation (‘morphing’)

between distinct conformations found in various crystal

structures. TLSMD analysis can be applied to one or more of

the constituent structures contributing to the MolMovDB

interpolation, followed by qualitative comparison of anima-

tion or other visualizations from MolMovDB morphing

(Krebs & Gerstein, 2000) and from TLSMD analysis (Painter

& Merritt, 2005). We have collected several examples of such

paired animations on the TLSMD website (Painter & Merritt,

2006).

Some potential applications of TLSMD have well defined

quantitative criteria for success. For example, the difficulty of

modeling backbone flexibility is a major limitation in current

methods for predicting protein–protein interactions, even

when the structures of both target proteins are already known

individually (Janin, 2005). Use of TLSMD analysis to identify

probable modes of backbone deformation may therefore

provide a powerful extension to the current generation of

docking programs such as RosettaDock (Gray et al., 2003;

Schueler-Furman et al., 2005; Wang et al., 2005) and can be

evaluated against the protein-docking targets comprising the

CAPRI challenge set (Janin et al., 2003; Janin, 2005).

5.2.5. Availability. TLSMD is a Open Source code base

released under the Artistic License. It is hosted on Source-

Forge as a subproject of the Python Macromolecular Library

(Painter & Merritt, 2004). We have also created a web server

http://skuld.bmsc.washington.edu/~tlsmd to perform TLSMD

analysis of structures submitted by external groups (Painter &

Merritt, 2006). Because the analysis is CPU-intensive, jobs are

queued for later execution and the submitter is notified by

e-mail when the analysis has been completed.

5.2.6. Summary. We have shown here that the addition of

multiple TLS groups into conventional isotropic refinement

typically lowers both the resulting R and Rfree residuals. It is

particularly striking that in some cases even a pure TLS model

with no refinement of individual B factors outperforms

conventional crystallographic refinement. In three of the test

cases presented here, pure TLS refinement of a model

containing 10–20 TLS groups yielded better R and Rfree than

conventional isotropic refinement despite reduction in the

number of thermal parameters in the model by a factor of 2.6

(1x6o) to 20 (1kp8). This reflects the fact that multi-group TLS

models constitute a parsimonious approximation to the true

underlying behaviour, both static and dynamic, of atoms in a

protein crystal structure.

The TLSMD algorithm described here allows the

construction of optimal multi-group TLS models from a

previously refined structure or as part of the refinement of a

new structure. Moreover, the ability to identify and model

specific modes of backbone flexibility on the basis of single-

crystal structures is of great interest even apart from any

improvement to crystallographic refinement.

We are grateful to Mark Robien and Jürgen Bosch for
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